
Subject: Clinical Microbiology

Topic:
Professional English for
Clinical Microbiology

Teaching Notes

Isabel Borja
NILE 2011

Index of teaching notes

Introduction to teaching notes	pag.3
Unit 1 – Laboratory techniques	
Lesson 1.1 – Gram Stain	pag. 4
Lesson 1.2 – The Microscope	pag. 8
Lesson 1.3 – Preparing Culture Media	pag. 13
Lesson 1.4 – Bacterial Culture	pag. 18
Assessment Unit 1 – Tick box template	pag. 24
Unit 2 – Working with bacteria	
Lesson 2.1 – Identification of Bacteria	pag. 25
Lesson 2.2 – Biochemical Test	pag. 30
Lesson 2.3 – Variability of Bacteria	pag. 34
Lesson 2.4 – Susceptibility Tests	pag. 37
Assessment Unit 2 – Tick box template	pag. 42
Unit 3 – Infectious Diseases	
Lesson 3.1 – Epidemiology	pag. 43
Lesson 3.2 – Intervention measures	pag. 48
Assessment Unit 3 – Tick box template	pag. 53

Introduction to Teaching notes

This is a 30-hour project. It is aimed at students that already have a certain level of English, but there is some differentiation provided as well: the most difficult activities have **alternative worksheets** that include more language support and may be found in "Supplementary materials".

Before the class, look at the vocabulary in the unit you will teach. Decide which words are difficult and which students should know. Check in class if students know difficult words by giving clues if they should know or explain if words are new.

There are **assessment activities** at the end of each unit. The activities are in "Supplementary materials". They are planned as group activities to give students the opportunity to be creative and produce visuals or essays and present them to the class. There are different topics for each group and all of them are complementary, so they may contribute to the lesson content.

To make the feedback of activities easier, there are **power point presentations** containing the answer key for each unit in "Supplementary materials" as well.

Difficulty of activities is rated as follows:

- o **Fom** ↑
- Medium ⇔
- High ①

Lessons and timing

UNIT	Lesson	Timing
1.1 - Gram Stain		2:00 h
	1.2 - The Microscope	3:00 h
UNIT 1	1.3 - Preparing Culture Media	2:30 h
	1.4 - Bacterial Culture	2:30 h
	Assessment unit 1	2:00 h
	2.1 – Identification of Bacteria	3:00 h
	2.2 – Biochemical Tests	2:00 h
UNIT 2	2.3 – Variability of Bacteria	2:00 h
	2.4 – Susceptibility Tests	2:00 h
	Assessment unit 2	2:00 h
	3.1 - Epidemiology	2:00 h
UNIT 3	3.2 – Intervention Measures	2:00 h
	Assessment unit 3	3:00 h
	Total timing	30 hours

Unit 1: Laboratory Techniques

In this unit, we deal with the basic vocabulary students need to develop further topics and to use technical documents. All the content is introduced in active tasks as an opportunity to develop thinking skills and self-learning by students.

Teaching notes 1.1 – Gram Stain

Timing: 2:00 h **Room:** computer room (laboratory optional)

Teaching aims:

- Morphological classification of bacteria
- Gram stain procedure

Assessment targets:

Initial assessment

Resources:

- Internet access
- Digital projector for feedback
- Power point presentation containing the answer key Unit 1 in "Supplementary materials"

Activity 1 – Significance of Gram Stain	
Subject difficulty: ↓	Language difficulty: ↓

Procedure:

- Explain activity 1
- Students work individually
- They check the answers with their partners
- Feedback in plenary

Language support:

- Text frame
- Word bank

Resources:

Worksheet 1.1

Answer key:

Gram stain is the main stain procedure in Microbiology. It enables us to know several things about bacteria in the smear:

- GRAM-STAIN REACTION
- SHAPE
- ARRANGEMENTS of bacteria

Bacteria are divided into **two** large groups depending on their Gram-stain reaction: the so-called **Gram-positive** (GP) that remains coloured after the decolouration procedure and the **Gram-negative** (GN) that do not retain the dye and take the colour of the counterstain. Those differences rely on the basis of cell wall structures.

Considering together Gram reaction and shape we may set the **four** big groups of bacteria: GP bacilli, GP cocci, GN bacilli, and GN cocci.

Activity 2 – Morphological classification of bacteria: shape		
Subject difficulty: ⇔	Language difficulty: ↓	

Procedure:

- o Explain activity 2
- Students work individually to complete the activity
- They check the answers with their partners
- Feedback in plenary

Language support:

Word bank with specific words below

Resources:

O Worksheet 1.1

Bacterial morphology chart		
Straight rods are called	Bacilli	
Small straight rods are	Coccobacilli	
Curved rods are called	Vibrio	
Sphere shaped bacteria are	Cocci	
Spiral shaped bacteria are	Spirilla	
Rods with tapered ends are	Fusobacteria	

Word bank	
Vibrio	
Cocci	
Fusobacteria	
Bacilli	
Coccobacilli	
Spirilla	

Activity 3 – Morphological classification of bacteria: arrangements

Subject difficulty: ⇔ Language difficulty: ⇔

Procedure:

- Explain activity 3
- Students work in pairs to complete the activity
- They check the answers with another pair
- Feedback in plenary

Options:

In mixed skilled groups match one strong student with one weak

Language support:

- Word bank with specific words
- Audio guides on the Internet:
 - Online dictionary of Medical English http://medical-dictionary.thefreedictionary.com/
 - Latin names http://www.atsu.edu/faculty/chamberlain/Website/studio.htm

Resources:

- Worksheet 1.1
- Internet access
- Gram Stain descriptions:
 http://archive.microbelibrary.org/asmonly/details.asp?id=2380

Bacterial arrangements chart		
Arrangement	Suggestion	
GPC singly	Cocci	
GPC in lance-shaped pairs	Streptococcus pneumoniae	
GNC in coffee-bean shaped pairs	Neisseria gonorrhoeae	
GPC in chains	Streptococcus pyogenes	
GPC in grape-like clusters	Staphilococcus sp.	
GPB club-ended in palisade	Diphteroids	

Activity 4 – Gram Stain procedure

Subject difficulty: ⇔

Language difficulty: ⇔

Procedure:

- Explain activity 4
- Students read individually
- Then students fill in the gaps in pairs
- Feedback in plenary: each pair reads a sentence
- Words of difficult pronunciation are checked

Option:

o In mixed skilled groups match one strong student with one weak

Language support:

- Word bank with missing words
- Pictures
- Online dictionaries:
 - General English: http://www.wordreference.com
 - Medical English dictionary with sound: http://medical-dictionary.thefreedictionary.com/
- Alternatively, read and perform the actions in the laboratory

Resources:

- Worksheet 1.1
- Internet access

- 1. Place a drop of sterile saline or water on the slide. Transfer a small portion of a colony with a wire loop and gently mix to emulsify.
- 2. Let air-dry.
- 3. Fix the cells to the slide by heat by passing it (cell side up) through a flame. Do not let the glass become hot to the touch.
- 4. Place your slide on a slide holder.
- 5. Cover the entire slide completely with crystal violet and leave it for 1 minute. Pour it off and rinse briefly with running tap water. Drain the slide.
- 6. Cover the slide with iodine solution. Let it stand for 1 minute as well. Pour off and rinse with tap water. **Drain** the slide.
- 7. Add the **decolouriser** drop by drop until the runoff remains clear. Wash off briefly with tap water and drain the slide.
- 8. **Counterstain** with safranin for one minute and wash off briefly with tap water to remove excess dye.
- 9. Drain slide and let it air-dry in an **upright** position.

Activity 5 incrision: sequencing Grain Stain	Activit	y 5 – Revision: se	equencing Gram Stain
--	---------	--------------------	----------------------

Subject difficulty: ⇔

Language difficulty: ⇔

Procedure:

- Explain activity 5
- Students work individually
- Students check the answers with their partners
- Feedback in plenary

Language support:

Look on activity 1 and activity 4

Resources:

Worksheet 1.1

Answer key:

First, you cover the smear with **crystal violet**. Next, you wash and cover it with **iodine solution**. Then you wash and decolourise it and finally you **counterstain** the smear with **safranin**.

As a result, Gram-positive bacteria stain blue. And Gram-negative bacteria stain red.

Teaching notes 1.2 – The Microscope

Timing: 3 h Room: laboratory

Teaching aims:

- Parts of the microscope
- Standard operating procedure

Prior knowledge:

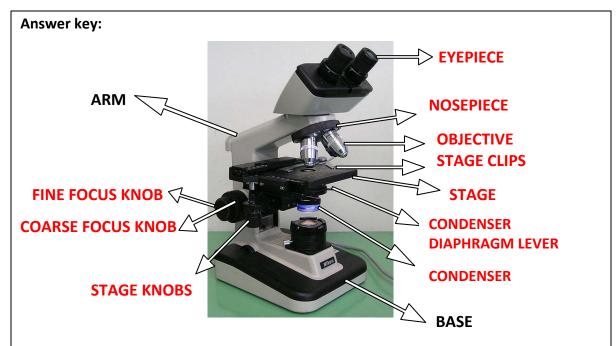
Sorting bacteria by Gram-reaction, morphology and grouping

Resources:

- Microscopes
- Digital projector for feedback
- Power point presentation with answer key Unit 1 in "Supplementary materials"
- Optional: Tutorial on the bright light microscope http://www.udel.edu/biology/ketcham/microscope/scope.html

Activity 1 – History of the Light Microscope			
Subject difficu	lty: ⇩	Language difficulty	<i>r</i> : ⇔
o They che	work in pairs eck the answers with a	another pair	
 Feedback in plenary Language support: Clues in the time line 			
Resources: O Workshe Answer key:			
Romans Lenses	1595 Janssens Flea glasses 10X	1665 Hooke Magnifying glasses 30X Cell	1674 Leeuwenhoek Microscope 270X Bacteria Protozoa

Activity 2 – Parts of the bright-field microscope			
Subject difficulty: ⇔	Language difficulty: ⇔		
Activity 2.a			
Procedure:			
 Explain activity 2.a 			
 Read the sentences and manipulate the microscope to demonstrate what is said 			
 Students work in pairs to complete the activity and manipulate their microscopes 			
 They check the answers with another pair 			
 Feedback in plenary 			
Options:			
 In mixed skilled groups match one strong student with one weak 			


Resources:

- Worksheet 1.2
- Microscopes

Language support:

- o Written definitions provided on the text
- o Performance of actions on the text

Activity 2.b

Procedure:

- Explain activity 2.b
- Students work in pairs to complete the activity
- They check the answers with another pair
- Feedback in plenary

Options:

o In mixed skilled groups match one strong student with one weak

Resources:

Worksheet 1.2

Language support:

Written definitions provided on the text

Answer key:

- i The arm is on the left side
- ii The base is at the bottom
- iii The light source is at the top of the base, right in the middle

Activity 3 – Standard operating procedure to look under the microscope

Subject difficulty: 1 Language difficulty: 1

Procedure:

- For each section, read the text and perform the actions at the microscope.
- Students decide on the heading and then answer the questions.
- Students work in pairs
- Feedback in plenary

Options:

o In mixed skilled groups match one strong student with one weak

Language support:

- Word bank
- Teacher's performance

Resources:

- Worksheet 1.2
- Microscopes

Activity 3.a

Answer key:

Heading (A): STARTING

Activity 3.b

Answer key:

- Heading (B): FIRST FOCUS
- What happens if you start focusing with the high magnification objective instead of the medium-power one? – It is more difficult
- What happens if you start focusing already looking down the microscope and rotate the coarse focus knob moving the objective to the slide? – I could break the objective lens

Activity 3.c

Answer key:

- Heading (C): LIGHT ADJUSTEMENT
- O Chart:

	40X objective
Condenser must be	low / lowered
Diaphragm lever must be	open / opened

Activity 3.d

- Heading (D): **SCANNING**
- What happens if you do not have a set scan pattern? I will get lost in the smear and I may have seen the same field of view twice or I may haven't seen it

Activity 3.e

Answer key:

- Heading (E): MOVE UP MAGNIFICATION
- Chart:

	100X oil objective
Condenser must be	high / raised
Diaphragm lever must be	close /closed

- What happens if you use the coarse focus knob when changing from one objective to another? - I will get out of focus (objectives on a nosepiece are adjusted to be PARAFOCALS)
- What happens if you do not adjust the condenser again when changing from one objective to another? - I will have a poor quality image, with low resolution and few details. Each objective

Activity 4 – Revision	
Subject difficulty: û Language difficulty: ⇔	

Procedure:

- Explain activity 4
- Student alone to complete the activity
- They check the answers with their partners
- Feedback in plenary

Options:

o In mixed skilled groups match one strong student with one weak

Language support:

• Written definitions provided on the text

Resources:

Worksheet 1.2

- Turning the focus knobs you obtain ... (2) ... a good quality image
- Adjusting the condenser you obtain ... (1) ... enhanced contrast
- You change lens to a higher power objective for ... (3) ... higher resolution
- We start under medium-power objective to ... (4) ... do a quick scan of the smear

Activity 5 – Reporting results in direct specimens: case studies

Subject difficulty: ⇔

Language difficulty: \mathbb{Q}

Procedure:

- Explain activity 5
- Students work individually
- o They check the answers with their partners
- Feedback in plenary

Language support:

Word bank with grading expressions

Resources:

Worksheet 1.2

Answer key:

- Image 1 B: cerebrospinal fluid
- Image 2 C: urethral discharge
- Image 3 A: vaginal discharge
- Image 4 E: sputum
- Image 5 D: urine

Teaching notes 1.3 - Preparing culture media

Timing: 2:30 h **Room:** ordinary classroom

Teaching aims:

- Procedure to prepare culture media
- Fundamentals of autoclaving
- Preparing plates

Prior knowledge:

- Mathematical operations
- International System of Units
- Reading decimals

Resources:

- Worksheet 1.3
- Alternative worksheet for activity 4 in "Supplementary materials"
- Digital projector for feedback
- Power point presentation with answer key Unit 1 in "Supplementary materials"

Activity 1 - Previous knowledge

Subject difficulty: ↓ Language difficulty: ↓

Activity 1.a

Procedure:

- Explain activity 1.a
- Students work individually to complete the activity
- They check the answers with their partners
- Feedback in plenary

Language support:

Mathematical operations word bank

Resources:

o Worksheet 1.3

Answer key:

+	Addition	2 + 2 = 4	Two plus two are four
-	Subtraction	5 – 3 = 2	Five minus three are two
х	Multiplication	4 x 2 = 8	Four times two is eight
÷	Division	6 / 2 = 3	Six divided by two is three

Activity 1.b

Procedure:

- Explain activity 1.b
- Students work individually to complete the activity
- They check the answers with their partners
- Feedback in plenary

Language support:

o International System of Units word bank

Resources:

O Worksheet 1.3

Measures of VOLUME		Measures of MASS		Measures of LENGTH	
Units	Symbols	Units	Symbols	Units	Symbols
Litre	1	Gram	g	Metre	m
Millilitre	ml	Milligram	mg	Millimetre	mm

Activity 2 – Preparing culture media: preparing solution

Subject difficulty: ⇔ Language difficulty: ⇔

Activity 2.a

Procedure:

- Explain activity 2.a
- Students work individually
- They check the answers with their partners
- Feedback in plenary

Language support:

Diagram on changes in state

Resources:

Worksheet 1.3

Answer key:

- Agar melts / solidifies when heating above 85ºC
- Agar melts / solidifies when cooling from 42°C and below
- Agar must be molten / solidified to be handled

Activity 2.b

Procedure:

- Explain activity 2.b
- Students work individually
- They check the answers with their partners
- Feedback in plenary

Language support:

- Reading decimals
- Text containing the words needed

Resources:

Worksheet 1.3

Answer key:

$$X \ g = 200 \ ml \ x \frac{111 \ g}{1000 \ ml} = 22.2 \ g$$

Activity 2.c

Procedure:

- Explain activity 2.c
- Students work individually
- They check the answers with their partners
- Feedback in plenary

Language support:

Labelled images

Resources:

Worksheet 1.3

Answer key:

• For weighing substances, you have to use a **weighing dish** to put the powder on the **scales**, and a **graduated cylinder** to measure the water.

Activity 2.d

Procedure:

- Explain activity 2.d
- Students work individually
- They check the answers with their partners
- Feedback in plenary

Language support:

Text contains the words needed

Resources:

Worksheet 1.3

Answer key:

- (1) The vessel must be about twice the final volume of the medium because boiling liquids expand and generate vapours. If there is no space enough, the flask may explode
- (3) As you pour the water, use it to wash the weighing dish because as powder is hygroscopic, it will stick on the dish and we don't want to lose powder
- o (6) Heat the mix to boil for 1 minute to dissolve the agar in the water

Activity 3 – Prepare culture media: sterilizing		
Subject difficulty: ⇔	Language difficulty: $ \circlearrowleft $	

Activity 3.a

Procedure:

- Explain activity 3.a
- Students work individually to complete the activity
- They check the answers with their partners
- Feedback in plenary

Language support:

Changes in state of water word bank

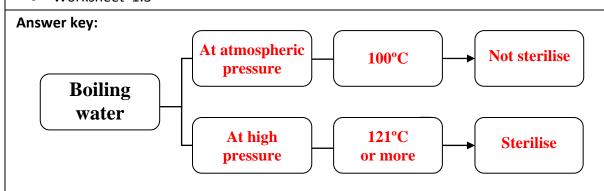
Resources:

Worksheet 1.3

	solidify		condense	
ice	\leftrightarrows	water	\leftrightarrows	vapour /steam
	melt		evaporate	2

Activity 3.b

Procedure:


- Explain activity 3
- Students work individually to complete the activity
- They check the answers with their partners
- Feedback in plenary

Language support:

Text contains the words

Resources:

Worksheet 1.3

Subject difficulty: ⇔

Language difficulty: ⇔

Procedure:

- Explain activity 4
- Students work in pairs to complete the activity
- They check the answers with another pair
- Feedback in plenary

Language support:

- Connectors word bank
- Photo
- Written sentences

Resources:

- Worksheet 1.3
- Alternative worksheet for activity 4 in "Supplementary materials"

Answer key:

FIRST OF ALL cool the flask to 50°C in a water-bath for half an hour,

BECAUSE that avoids burns and keeps the medium still liquid.

MEANWHILE, lay Petri dishes on the bench top.

Wrap a paper towel around the flask to handle it.

Hold the flask with your right hand and with your left hand open the cover of the plate just wide enough to pour the media.

THEN pour about 20 ml into each plate.

This is enough to set an even agar layer of 0.5 mm thick over the bottom of the plate. Leave the plates undisturbed to cool and solidify.

Once the agar has set, invert the plates to store them. OTHERWISE, condensation falling from the lids into the agar surface will cause problems when inoculating the plate.

Activity 5 – Revision	
Subject difficulty: ⇔ Language difficulty: ↓	

Procedure:

- Explain activity 5
- Students work individually to complete the activity
- They check the answers with their partners
- Feedback in plenary

Language support:

Text frame

Resources:

Worksheet 1.3

Cause	Effect
Dirty materials Overdilution Overheating Error in weighing Incomplete dissolution	Turbidity and poor bacterial growth Soft gel Darkening and poor bacterial growth Soft gel Turbidity and soft gel

Teaching notes 1.4 – Bacterial culture

Timing: 2:30 h **Room:** computer room

Teaching aims:

- o Selection of media
- Streak plate method
- Incubation atmospheres
- McFarland turbidity standards

Prior knowledge:

- Reading fractions
- Reading decimals
- Reading powers
- Reading potentials of ten in scientific notation

Resources:

- Worksheet 1.4
- Power point presentation with answer key Unit 1 in "Supplementary materials"
- Digital projector for feedback
- Internet connection

Activity 1 – Previous knowledge: mathematics		
Subject difficulty: ${\mathbb Q}$	Language difficulty: Φ	

Procedure:

- Explain activity 1
- Students work individually to complete the activity
- They check the answers with their partners
- Feedback in plenary

Language support:

Word bank

Resources:

Worksheet 1.4

	Fractions	Decimals	
1/2	A half	3.14	Three point one four
1/4	A quarter	0.5	Nought point five
2/3	Two thirds	0.07	Nought point oh seven
5/8	Five eighths	6.003	Six point oh oh three
1/100	One hundreth	0.1 x 10 ⁻³	Nought point one times ten to minus three

	Powers		
	2 ⁴	Two to the four	
X ^y	5 ²	Five <mark>squared</mark>	
	2 ³	Two cubed	
	Potentials of ten (scientific notation)		
	10 ²	Ten <mark>squared</mark>	
10 ^x	4.7 x 10 ¹²	Four point seven times ten to the twelve	
	0.5 x 10 ⁻²	Nought point five times ten to minus two	

Activity 2 – Selection of media		
Subject difficulty: ⇔	Language difficulty: ⇔	

Procedure:

- Explain activity 2
- Students read the text individually
- o Students work in pairs to search for information on the net and complete the table
- o They check the answers with another pair
- Feedback in plenary

Language support:

- Words provided on the text
- Online dictionaries: http://wordreference.com

Resources:

- Worksheet 1.4
- o Interesting suppliers of dehydrated culture media:
 - BD http://www.bd.com/products
 - Oxoid http://www.oxoid.com/uk/blue/index.asp

Suggested answer key:

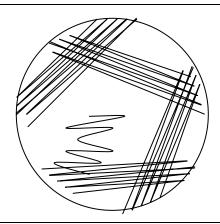
Media name (i.e.)	Category	Utility
Blood agar	Enriched	Streptococcus etc
Chocolate agar	Enriched	Nesisseria, Haemophilus
SS agar	Selective	Salmonella, Shigella
TCBS	Selective	Vibrio cholerae
MacConkey agar	Differential	Enterobacteriae
Manitol-Chapman agar	Differential	Staphilococcus

Activity 3 – Streak plate method

Subject difficulty: ⇔ Language difficulty: ⇔

Procedure:

- Explain activity 2
- Students read the text individually
- Students working in pairs to complete the diagram
- They may look difficult words in the online dictionary
- They check the answers with another pair
- Feedback in plenary. Use the power point to gradually reveal a picture of the streak plate method.


Language support:

- Text
- o Diagram
- Online medical dictionary: http://www.thefreedictionary/medicaldictionary
- Online colloquial dictionary: http://wordreference.com

Resources:

O Worksheet 1.4

Answer key:

Activity 4 - Atmospheric conditions

Subject difficulty: ⇔ Language difficulty: ⇔

Procedure:

- Explain activity 3
- Students read the text individually
- Students work individually to complete the activity
- o They check the answers with their partners
- Feedback in plenary

Language support:

Text contains the words

Resources:

Worksheet 1.4

Answer key:

Group	Aerobic atm	CO ₂ – rich atmosphere	O ₂ – low atmosphere	Anaerobic atm
STRICT AEROBES	✓	✓		
CARBOXYPHILIC ORG		✓		
MICROAEROBIC ORG			✓	
FACULTATIVES	✓	✓		✓
STRICT ANAEROBES				✓

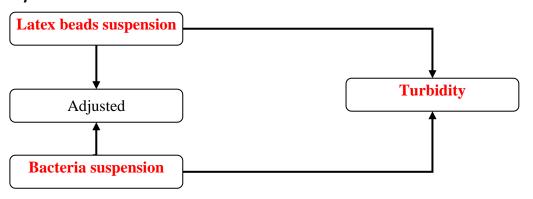
Activity 5 – Bact	erial standards

Subject difficulty: ⇔ Language difficulty: ⇔

Activity 5.a

Procedure:

- o Explain activity 4.a
- Students read the text individually
- Students working in pairs
- o They check answer with another pair
- Feedback in plenary


Language support:

Language provided on the text

Resources:

O Worksheet 1.4

Answer key

Activity 5.b

Procedure:

- o Explain activity 4.b
- Students work individually
- They check the answers with another pair
- Feedback in plenary

Language support:

Word frame

Resources:

Worksheet 1.4

Answer key:

- The McFarland 1 Standard corresponds to a suspension of three point oh times ten to eight cells per millilitre
- The McFarland 2 Standard corresponds to a suspension of six point oh times ten to eight cells per millilitre
- The McFarland 3 Standard corresponds to a suspension of nine point oh times ten to eight cells per millilitre

Activity 5.c

Procedure:

- Explain activity 4.c
- Students work individually
- They check the answers with another pair
- Feedback in plenary

Language support:

Word frame

Resources:

O Worksheet 1.4

Answer key

- 1. For a final volume of **1** ml, first of all we dispense **0.9** ml of solvent into a sterile tube
- 2. Then, we dispense 100 µl of the suspension 1McF.
- 3. Mix and use

Assessment

Procedure:

- At the end of the unit, students in pairs do a power point to summarize the unit through visuals
- They prepare the activity by their own and give the presentation in plenary
- Assessment criteria as shown below

Language support:

• Text frame for the presentation

Resources:

- Assessment 1 in "Supplementary materials"
- Tick box template for assessment

Tick box template - Assessment criteria UNIT 1

		Students																			
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	Criteria																				
1	Does the student include 10 slides or more?																				
2	Does the student include different kind of diagrams?																				
3	Does the student present from 10 to 12 contents?																				
4	Can the student link the contents presented?																				
5	Can the student explain concepts properly?																				
6	Can the student use technical words correctly?																				
7	Does the student show self-confidence?																				
8	Can the student talk fluently?																				
9																					