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The research as a source of new pedagogic methods of mathematics 
 

There is a close dependence between the pedagogic methods and the research 
lines. In fact, there exists a continuous interchange between new advances in science 
and new methods of teaching it. The actual lines of research will become the new 
subjects to teach. I may give some examples: the differential calculus, the algebra, the 
arithmetic, etc.  
 
 First example: the differential calculus 
 

Newton and Leibniz discovered the differential (and integral) calculus, which 
was also developed by others researchers such as L’Hôpital, Bernoulli and Euler. In the 
XVII and XVIII centuries the differential calculus was an active field of research. In the 
XIX century it becomes an academic subject at the university level. In the XX century 
the Newton fluxions (derivatives) and the Leibniz integrals and differentials are taught 
to 16-17 years old pupils at high schools. Aside of the main relation between the 
derivative and the primitive, I enumerate other theorems taught at these levels: 
 
 The chain rule for derivatives of composed functions. 

The Barrow’s rule for the definite integral. 
 The Rolle's theorem. 
 The mean value theorem. 
 The Cauchy's theorem. 
 The L’Hôpital rule to calculate indeterminate limits. 
 
 Second example: the linear algebra 
 
 In the field of the linear algebra, recall that the matrices were discovered by 
Arthur Cayley (A memoir on the theory of matrices, 1858) although Leibniz already 
worked with the determinants. Nowadays, foundations of linear algebra are taught at 
high schools: 
 
 The operations with matrices 
 The determinants. 
 Solving the systems of linear equations with determinants. 
 The Gauss method to solve systems and invert matrices. 
 The Rouché-Frobenius theorem. 
 



 2 

 Third example: the Ancients’ geometry   
 

Also we have other examples. Archimedes discovered that the volumes of the 
cone, sphere and cylinder having the same diameter and altitude are in the ratio 1:2:3. 
This aphorism was engraved in his tomb. Geometry was an active field of research 
during the Hellenistic period. Now we are teaching the formulas of the volumes to 12-
14 years old pupils but also other geometric theorems such as: 
 
 Theorems about angles. 
 Theorem of the isosceles triangle. 
 Formulas to calculate the area of planar figures. 
 Formulas to calculate volumes. 
 
 Fourth example: the arithmetic 
 
Also the field of arithmetic has been incorporated to the curricula of high schools. 
Among others we teach (12 years old pupils): 
 

The fundamental theorem of arithmetic (decomposition of a number in prime 
factors). 

The maximum common divisor and the minimum common multiple. 
Divisibility criteria. 
Fractions (introduced by Egyptians). 
Decimal fractions (introduced by Simon Stevin in 1585). 
 
In algebra, nowadays we use the algebraic notation mainly developed by Viète. 
As a last example, I teach in the subject of computer science the binary numbers, 

which were firstly worked by Leibniz. 
 
So we must expect that any new field of mathematics, now upon research, in a 

little time will become an academic subject, also at high school. We may remember the 
Ernst Haeckel’s aphorism: “the ontogeny recapitulates the phylogeny”. Although this 
statement is actually considered a falsehood, we may adapt its sense and say: 

 
 “Teaching mathematics recapitulates its history” 
 
The field of the geometric algebra will also follow this path. Those new areas 

now under the scope of research will be soon learned by our pupils also at high school. 
In fact the main problem of the geometric algebra is the blockade it suffers mainly at the 
university (at least in Spain, although we have the feeling that this is a general situation 
in all the world). So our contributions to the geometric algebra will soon become an 
academic subject if we are able to overcome this blockade. 

However any coin has two faces and this is also applicable to the interaction 
between pedagogy and research. My experience teaching mathematics (16 years) has 
shown me that the process of teaching is a constant source of new ideas and inspiration 
for those that are working in research. My lessons on geometry, analysis and linear 
algebra at high school have supplied me many new ideas for advance in the research of 
geometric algebra. I may affirm that the Treatise of plane geometry through geometric 
algebra would not exist if I were not teacher of mathematics because of the lack of the 
source of inspiration. 
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The title of the conference is: 
 
“How and why the geometric algebra should be taught at high school. 

Experiences and proposals.”  
 
because we must accelerate the collapse of the barriers preventing that the geometric 
algebra be reckoned an important academic subject, a first and main front being the high 
school. At this level, the mind of our pupils is very flexible and receptive. Any seed of 
geometric algebra sown at this age will give very successful fruits whenever there exists 
continuity of the teaching at the university level. The main question is not the difficulty 
of the geometric algebra for our pupils, since any topic may be adapted to the 
corresponding level. The true problem is the inertia of the departments (of the teachers 
themselves), which tend to impart the same subjects that have been always taught. 
However do not think that these subjects are a good sample of all the mathematics. Not 
at all, but usually they are a partial and slanted view of them. So the renovation, the up-
to-date reintroduction of geometry through the geometric algebra will be a hard task and 
likely we shall have to battle against our own colleagues. 
 Now I give some examples about how we may teach parts of the geometric 
algebra to our students. I’m mainly considering 15-16 aged pupils, but also you may 
lengthen this range to first courses of university. The transition from high school to 
college should be more gradual than the current one. In our school we intend that pupils 
do not suffer a crack in mathematics during this transition and I believe that we are 
achieving in some degree this purpose. However, if we introduce concepts of geometric 
algebra at high school and they do not have continuity at university, what is the yield of 
this effort?  
 
 
 Barycentric coordinates 
 
 One of the most interesting 
approaches to point geometry is the use 
of barycentric coordinates. Any generic 
point on a line may be written as linear 
combination of two given points of this 
line: 
 
 ( ) QkPkR +−= 1  
 
with coefficients whose addition is the 
unity. These coefficients are the 
barycentric coordinates. In the same way, the linear combination of two lines is the 
pencil of lines passing through the intersection of both lines. Any line of the pencil has 
the following general equation: 
 

( ) ( ) ( ) 0'1 2121 =+++++− cynxnpcynxnp  
 

Figure 1 
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In the space, we may write 
any plane of a pencil of planes for a 
given line as linear combination of 
two planes of this pencil. Consider 
the problem of finding the plane that 
contains a line and an outer point. If 
the line is given as intersection of 
two planes, the best way to solve this 
problem is to use the pencil of planes 
containing this line. Example: 
 
Find the plane containing the line  
 





=−+
=+

2
432

zyx
yx

 and the point (3, 4, −2). 

 
Take the pencil of planes for this line. Any plane 
of this pencil has the equation (using barycentric 
coordinates): 

 
( ) ( ) ( ) 021432 =−−+−+−+ zyxkyxk  

 
but it must contain the point: 

 
( ) ( ) ( ) 02243144332 =−++−+−⋅+⋅ kk  ⇒ 1−=k  

 
and so the searched plane is: 02 =+ zy  

In fact, a system of Cartesian coordinates hides the barycentric coordinates of 
the points (figure 4):  

 
( ) OQyOPxOyxR ++== , ( ) QyPxOyx ++−−= 1  

 
That is, any point R can be written as 

linear combination of three non-aligned points 
{ }QPO ,,  with barycentric coordinates always 
summing the unity. 

An immediate application of the 
barycentric coordinates is the calculus of the 
oriented area S of a triangle ABC: 
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which vanishes if the three points are aligned. 

In the same way, the oriented volume of the tetrahedron having vertexes A, B, C 
and D may be written using barycentric coordinates: 

Figure 2 

Figure 3 

Figure 4 
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 The barycentric coordinates are very useful in projective geometry. A 
projectivity is simply defined as a linear transformation of the barycentric coordinates: 
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where k is a variable number allowing that the transformed barycentric coordinates have 
sum equal to the unity. 
 
 Dual coordinates in the dual plane 
 
 The concept of pencil of lines leads to the definition of the dual plane, whose 
barycentric coordinates are those of the pencils of lines. Given a point base { }QPO ,,  
the dual base is formed by the lines OP , PQ  and QO . For Cartesian coordinates, the 
dual base are 01=+−− yx , 0=x  and 0=y . Any line on the plane is expressed as a 
linear combination of these three lines using barycentric coordinates. Let us calculate 
the dual Cartesian coordinates of the line 2x + 3y + 4 = 0. We must solve the identity: 

 
 2 x + 3 y + 4 ≡ a' ( − x − y + 1) + b' x + c' y  yx,∀  
 
x ( 2 + a' − b' ) + y ( 3 + a' − c' ) + 4 − a' ≡ 0 

 
whose solution is: 
 
 a' = 4  b' = 6  c' = 7 
 
Dividing by the sum of the coefficients we obtain: 
 

( ) yxyxyx
17
7

17
61

17
4

17
432

+++−−≡
++  

 
whence the dual coordinates of this line are obtained as [b, c] = [6/17, 7/17]. Let us see 
their meaning. The linear combination of both coordinates axes is a line of the pencil of 
lines passing through the origin: 
 

 0
13
7

13
6

=+ yx  or  6 x + 7 y = 0 
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This line intersects the third base line −x −y + 1 = 0  at the point (7, −6), whose pencil of 
lines is described by: 
 

 ( ) ( ) 0
13
7

13
611 =






 +−++−− yxayxa  

 
Then 2 x + 3 y + 4 = 0 is the line of this pencil determined by a = 4/17. 
 Three lines are concurrent if the determinant of their barycentric dual 
coordinates vanishes. On the other hand, the line at the infinity has dual coordinates 
[1/3, 1/3], that is , it is the barycenter of the dual base. 
 Also the equation of any conic has very simple form using barycentric 
coordinates: 

 ( ) 0
1

1 =














 −−
−−

y
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yxyx S  

 
where S is a symmetric matrix. I have shown that the matrix of the tangential conic (the 
conic plotted in the dual plane by the dual points corresponding to the tangents to the 
point conic) is equal to the inverse of the matrix of the point conic, its equation being: 
  

 [ ] 0
1

1 1 =














 −−
−− −

b
a

ba
baba S  

 
where [a, b] are the Cartesian coordinates in the dual plane. 

 
Scalar and exterior product in the plane 
 
The metric geometry explained to our pupils is a skew geometry, that is, a 

censured geometry. Only those problems involving scalar product are considered. 
However the scalar and exterior products arise in a very symmetric form in geometry. 
We may and must teach to our pupils both products: 

 
yyxx wvwvwv +=·   ( ) 12ewvwvwv xyyx −=∧  

 
Then the geometric product may be introduced with the help of complex 

numbers: 
 

wvwvwv ∧+= ·  
 
A slight version may be to use a real instead of imaginary exterior product. 

Anyway it allows pupils to calculate the areas of triangles without having its altitude. 
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Plane trigonometry and the hyperbolic plane 
 

Many years ago I had prepared this table where the identities of the circular and 
hyperbolic functions are compared. But then I could not imagine in which extent the 
geometric algebra develops the analogy between circular and hyperbolic trigonometry.  
 

 

Figure 5 
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 Like the complex numbers are those naturally associated with the circular 
trigonometry, the hyperbolic numbers are those naturally associated with the hyperbolic 
trigonometry: 
 
 12ebaz +=  12

12 −=e    1ebaz +=  12
1 =e  

 
So we have the analogous of Euler’s and De Moivre’s identities: 
 
 ( ) xexex sincosexp 1212 +=   ( ) xexex sinhcoshexp 11 +=  
 
( ) nxenxxex n sincossincos 1212 +=+  ( ) nxenxxex n sinhcoshsinhcosh 11 +=+  
 
 An Euclidean angle is defined as the quotient of the arc length divided by the 
radius of the circle: 
 

 2

2
r
A

r
s
==α  

 
and it is proportional to the area of the circular 
sector. 
 In the same way a hyperbolic angle is 
defined as the quotient of the arc length of 
hyperbola divided by the radius of the hyperbola 
in the pseudo-Euclidean plane: 
 

 2

2
r
A

r
s
==ψ  

 
Of course, we cannot represent the 
hyperbolic arguments with circle arcs as 
made in the plane trigonometry. So a new 
sketch of the hyperbolic arguments by 
means of arcs of hyperbola is needed. In 
the figure 8 we see a typical hyperbolic 
triangle suitably drawn to show that the 
addition of the three angles is 12eπ− : 
 
The relation between angles in different 
quadrants are shown in the figure 9: 
 
 
 

Figure 6 

Figure 7 

Figure 8 
Figure 9 
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 Also the laws of sines, cosines and tangents for any generic Euclidean triangle: 
 

  
γβα sinsinsin

cba
==  

 
 αcos2222 cbcba −+=  
 

 

2
tan

2
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βα

βα

−

+

=
−

+

ba
ba

   

 
have their analogous laws for hyperbolic triangles: 
 

 
γβα sinhsinhsinh

cba
==  

 
 αcosh2222 cbcba −+=  
 

 

2
tanh

2
tanh

βα

βα

−

+

=
−

+

ba
ba

   

 
Some examples and proofs showed me that they work with the suitable 

orientation of the hyperbolic arguments displayed in the figure 9. 
We also explain to our pupils the power of a point with regard to a circle, which 

is the value obtained when the coordinates of the point are substituted in the equation of 
the circle. 
 
 ( ) ( ) 22

0
2

0
22'' ryyxxOSPOPSPSPRPR −−+−=−==   

 

 
 

Figure 10 

Figure 11 
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In the hyperbolic plane, the power of a point with regard to a hyperbola is also constant. 
The proof is as follows: the yellow and blue hyperbolic triangles in the figure are 
similar because the hyperbolic argument ψ (in the hyperbolic plane) is constant and 
equal to a half of the arc length R’S’ of the hyperbola. The opposite similarity may be 
written using the geometric product: 
 

( ) ( ) PSPR'PS'PR 11 −− =   
 
what implies: 
 
 ( ) ( ) 22

0
2

0
22' ryyxxOSPOPSPSPRPR' −−−−=−==  

 
 Observe that the power 
of a point with regard to a 
hyperbola in the hyperbolic 
plane is just obtained using 
the Cartesian equation! This 
clearly shows that Cartesian 
coordinates do not necessarily 
mean Euclidean coordinates. 
This extreme was already 
criticized by Leibniz. 
 On the other hand, I 
took this figure for the cover 
of my Treatise of plane 
geometry through geometric 
algebra. 
 
 
 Rank of a matrix, exterior product and systems of equations 
 
 We explain to our pupils that the rank of a matrix is the number of linearly 
independent rows or columns. In the method that uses determinants to find the rank, we 
take an element of the matrix and we add rows and columns taking always that matrix 
having non-null determinant: 
 






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







−
=

5013
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01 =⇒=
−

→=
−

→≠−=→≠ M  

 

Figure 12 
Figure 12 
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If all the determinants obtained adding one row and one column to a non-null n-
dimensional determinant are zero then all the other n+1 dimensional determinants are 
null. This ensures that the rank of the matrix is equal to n.  

In the alternative method using exterior product we have: 
 
( ) ( ) =+++∧+++ 43214321 23332 eeeeeeee  

 
   434232413121 5732 eeeeeeeeeeee ∧−∧−∧+∧−∧−∧−=  
 
The coefficients of the exterior product are the corresponding minors of the matrix. 
Now we make the exterior product with the third vector: 
 
  ( ) ( ) ( ) 05323332 42143214321 =++−∧+++∧+++ eeeeeeeeeee  
 
So we conclude that the rank of the matrix M is 2.  
 Note that the determinants of a given order n, which are the components of the 
exterior product of n vectors are not linearly independent although they are orthogonal 
from the point of view of the Pythagorean theorem. Solely I wish to manifest that the 
following words are not synonyms in geometric algebra:  linearly independent ≠ 
orthogonal ≠ perpendicular. I may explain more about this question at the end of the 
talk if you wish. 

Another application of the exterior product is the resolution of systems of 
equations. 
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which may be written as a vectorial equality: 
 
 bvxvx nn =++L11  
 

where 
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



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



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

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 . In order to solve it, we take the exterior product with 

all the other vectors: 
 
 niini vvbvvvvvx ∧∧∧∧∧∧=∧∧∧ +− LLL 11121  
 
whence it follows the Cramer’s rule: 
 

 
( )

( )n
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∧∧∧∧∧∧
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 Change of coordinates 
 
 One set of coordinates may be easily changed to another set of coordinates with 
the exterior product. For example, the change from Cartesian to spherical coordinates. 
We have: 
 
 ϕθ cossinrx =   ϕθ sinsinry =   θcosrz =  
 
 ϕϕθθϕθϕθ drdrdrdx sinsincoscoscossin −+=  
 
 ϕϕθθϕθϕθ drdrdrdy cossinsincossinsin ++=  
 
 θθθ drdrdz sincos −=  
 
When taking the exterior product of the three differentials we obtain the volume 
element: 
 
 ϕθθ dddrrdzdydxdV ∧∧=∧∧= sin2  
 
But we can apply it to any geometric element such us the surface element: 
 
 ϕθθθϕθ ddrddrrdydx ∧+∧=∧ cossinsin 22  
 
 drdrddrddrrdzdy ∧+∧+∧−=∧ ϕϕθθϕθϕθθϕ coscossincossinsin 22  
 
 drdrddrddrrdxdz ∧+∧+∧=∧ ϕϕθθϕθϕθθϕ sincossinsinsincos 22  
 
 dxdzdzdydydxdA ∧+∧+∧=  
 
This is a vectorial equation whence one deduces the modulus of the element of area: 
 
 =∧+∧+∧= 2222 dxdzdzdydydxdA  
 
  22222422 sinsin drdrddrddrr ∧+∧+∧= ϕθϕθθθ  
 
So we have the differential of area in spherical coordinates: 
 
 drdrddrddrrdA ∧+∧+∧= ϕθϕθθθ sinsin2  
 

Rotations and symmetries 
 
 The axial symmetry (or reflection) shown in the figure may be expressed in the 
form: 
 vPRvPR' 1−=  
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where v is the direction vector of the axis of symmetry. This is easily proved because 
the perpendicular component anticommutes with the vector v: 
 
 ( ) ( ) ||||

1
||

1 PRPRPRPRvvvPRPRv +−=+−=+ ⊥⊥
−

⊥
−  

 
If the point R belongs to the line, the vector PR and the direction vector v are 

proportional and commute: 
 
PR v = v PR ⇔ PR v − v PR = 0    ⇔     PR ∧ v = 0   ⇔ PR  = v −1 PR v 
 
The last equation is the algebraic equation 
of a line and shows that the vector PR 
remains invariant under a reflection in the 
direction of the line. That is, the point R 
only belongs to the line when it coincides 
with the point reflected in this line. 
Separating components we have: 
 

21 v
yy

v
xx pP −

=
−

 

 
Also, a rotation of angle α may be 

expressed in a way analogous to axial 
symmetries: 
 
 ( ) ( ) ( )2/sin2/cos2/sin2/cossincos 121212 αααααα eveevv' +−=+=  
 
The first form is only valid on a plane, while the second form is general for any 
dimension. If we take any complex number with argument α /2 we may write: 
 
 zvzv' 1−=   

2/α
zz =  

 
Now we may easily prove which 
transformation is the composition of two 
reflections with regard to directions v and w: 
 
 vtvt' 1−=  

 
zvzwvtvwwt'wt'' 1111 −−−− ===  

 
 wvz =   
 
The product of two vectors is a complex 
number and therefore the composition of 
two reflections is a rotation over a double of the angle between both directions. If the 
directions are parallel, the rotation has center at the infinity and becomes a translation 
along a double distance of that between the axes of symmetry.  

Figure 13 

Figure 14 
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 Of course, the composition of two rotations on the plane is another rotation over 
an angle equal to the addition of both angles as follows from the product of complex 
numbers in polar form: 
 
 

βαβα +
== tztztz  

 
 In the Euclidean space, each rotation is described in the following way: 
 
 ( ) ( )2/sin2/cos2/sin2/cos αααα uvuv' +−=  
 
where u is a unitary bivector. In general: 
 
 qvqv' 1−=  
 
where q is any quaternion whose plane is the plane of rotation and whose argument is 
the half of the rotation angle. This expression is applied to any element of the algebra of 
the three-dimensional space such as scalars, vectors, bivectors or volumes. However in 
the technological applications the use of only bivectors and quaternions is preferred. 

The composition of two rotations in any planes is obtained through the product 
of quaternions: 
 
 rqvqrv'' 11 −−=  
 
This is the best way to describe rotations and composition of rotations with immediate 
technological interest, such as the engineers have discovered long time ago. 

However there is a difficulty with the mirror reflections, which cannot be written 
in this way. This has a physical consequence: an asymmetric molecule cannot be 
converted into its mirror image, as Louis Pasteur showed in the case of tartaric acid. 
 
 Notable points of a triangle 
 
 The conditions of intersection of the medians, bisectors of the sides, the angle 
bisectors and the altitudes lead to geometric equations for the notable points of a 
triangle PQR whose solutions are respectively:  
 

 
3

RQPG ++
=       (centroid) 

 
( )( ) 1222 2 −∧++−= QRPQPQRRPQQRPO     (circumcenter) 

 

PQRPQR
PQRRPQQRP

I
++

++
=        (incenter) 

 
( ) ( ) 1··· −∧++= RPQRPQRRRPQQQRPPH     (orthocenter) 

 
( ) ( ) 14 −∧++= QRPQRPQRQRPQPQRPN   (center of the nine-

point circle) 
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Observe that the points lying on the Euler line have expressions implying the geometric 
(Clifford) product (for the centroid is not needed but we may also add a factor and a 
divisor ( ) 1−∧QRPQ ), expressions which cannot be written using only the scalar 
product of the so called metric geometry. This shows clearly the importance of the 
geometric product in geometry and the partial vision and censure with which the 
geometry is nowadays taught. 
 
 Some comments on the 
Lobachevskian geometry 
 
 Also the Lobachevsky’s geometry may 
be easily explained to our pupils using 
geometric algebra. The two sheeted 
hyperboloid with constant radius in the 
pseudo-Euclidean space realizes the 
Lobachevsky’s geometry: 
 
 1222 =−− yxz  
 
Starting from this point we may deduce 
expressions of the change of coordinates for 
any projection. 
 Let us see, for instance, the 
stereographic projection or Poincaré disk with 
more detail. This conformal projection whose 
point of view is the pole of one sheet is 
displayed by the figures 15 and 16: 
 

 1+= z
u
x  1+= z

v
y  

 
where u, v are the coordinates on the plane of 
projection. The arc length is: 
 

       22

22
222

1
2

vu
dvdudzdydxds

−−
+

=−+=  

 
The exterior product allows us to calculate quickly the differential of area: 
 

 ( ) ( ) ( )
( )222

222

1

4

vu

dvdu
dxdzdzdydydxdA

−−

∧
=∧−∧−∧=  

 
 Also with the help of the exterior product we may deduce the azimuthal 
equivalent projection, which preserves areas, by imposing that the area differentials in 
Cartesian coordinates and in the projection must be equal: 
 

Figure 15 

Figure 16 



 16 

 ( ) ( )
( ) ( )





==

∧=∧=

zfyvzfxu

dvdudydx
z

dA 22
2

2 1
 

 

 
1

2
+

=
z

xu   
1

2
+

=
z

yv  

 
Other projections of the hyperboloid are 

the central projection (Beltrami’s disk), whose 
point of view is the origin of coordinates, the 
cylindrical equidistant projection, which uses 
the Weierstrass coordinates analogous of the 
spherical coordinates: 

 
ϕψ cossinh=x  
ϕψ sinsinh=y  

ψcosh=z  
 

2222 sinh ϕψψ ddds +=    
 

ϕψψ dddA ∧= sinh  
 
the cylindrical conformal projection (analogous 
of Mercator’s projection) and the conic 
equidistant and conformal projections. For all of 
them the exterior product allows us to calculate 
the area differential  

 
 
 The Treatise of plane geometry 
through geometric algebra 
 
As a pedagogic tool for the introduction 
of geometric algebra, you have available 
the Treatise of plane geometry through 
geometric algebra. This book has four 
parts: 
 

1. The vector plane and the complex 
numbers 

2. The geometry of the Euclidean 
plane. 

3. Pseudo-Euclidean geometry. 
4. Plane projections of tri-

dimensional spaces. 
 
and many solved exercises in each lesson. 
It may be used as a reference book for 

Figure 17 
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high school pupils, but also as a textbook for introductory courses on geometric algebra 
or preliminary courses on plane geometry at the first university year. In fact my aim in 
writing it was to be a bridge between high school and university and a help for teachers. 
In this book are collected a significant part of the lessons given in the summer courses 
on geometric algebra for teachers that we (Josep Manel Parra and me) have imparted in 
the framework of the Escola d’Estiu de Secundària of the Col·legi de Doctors i 
Llicenciats en Filosofia i Lletres i Ciències de Catalunya. Perhaps you believe that I’m 
selling the book but in any case I do not make business since you may freely download 
it from Internet at the address: 
 
 http://campus.uab.es/~PC00018 
 
 Thank you very much for listening to me and I will answer your questions if 
possible. 


