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Abstract: Albuquerque and Majid [7] have shown how to view Clifford algebras C`p,q as twisted group rings
R

t[(Z2)n] whereas Chernov [10] has observed that for each Clifford algebra C`p,q there exists a finite 2-group G of
order 2p+q+1 such that C`p,q is a homomorphic image of its group algebra R[G]. Ab lamowicz and Fauser [4–6] have
introduced a special transposition automorphism Tε˜ of C`p,q and have studied various subgroups of Salingaros vee
groups Gp,q ⊂ C`p,q in relation to spinor representations of C`p,q. Depending on the isomorphism class of C`p,q,
every Salingaros vee group belongs to one of five families of central products of extra-special dihedral group D8, the
quaternionic group Q8 and Z2 × Z2, or Z4 (Brown [9], Salingaros [26–28], Varlamov [30]). The purpose of this talk
is to bring these concepts together in an attempt to relate algebraic properties of Clifford algebras to the properties
of these groups and their group rings.
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