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Abstract

Various computations in Clifford algebras C`(V, B) of an arbitrary bilinear form B in dim V ≤ 9 can be performed
with a free package CLIFFORD for Maple. Here, the bilinear form B is arbitrary, not necessarily symmetric, or, it
could be purely symbolic. Since the package is based on Chevalley’s definition of Clifford algebra as a subalgebra
of an endomorphism algebra of Grassmann algebra, the underlying basis in C`(B) is an undotted Grassmann basis,
although a dotted Grassmann basis can be used when the antisymmetric part of B is non-zero. A new experimental
package eClifford for C`p,q,r uses a different database and extends computations to vector spaces V of arbitrary
dimension. Using CLIFFORD, one can solve, for example, algebraic equations when searching for general elements
satisfying certain conditions, solve an eigenvalue problem for a Clifford number, and find its minimal polynomial, or
compute algebra representations, such as spinor or regular. One can compute with Clifford algebras C`p,q viewed as
twisted group rings R

t[Gp,q] of Salingaros vee groups Gp,q. Also, computations with quaternions, split quaternions,
octonions, and matrices with entries in a Clifford algebra can easily be completed. Due to the fact that CLIFFORD

is a Maple package based on Maple programming language, that is, it runs inside Maple, all Maple packages are
available. Thus, CLIFFORD can be easily made to work with new special-purpose packages written by the user. Some
examples of algorithms used in the package and computations will be presented.
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(a) reversion, grade involution, conjugation, transposition Tε̃ (in C`p,q)

(b) spinor representations of C`p,q

(c) computations with matrices with entries in a Clifford algebra

9. Research with CLIFFORD and related packages, such as SymGroupAlgebra:

(a) Deriving and proving properties of the transposition anti-involution Tε̃ in C`p,q.

(b) Computations with Salingaros vee groups Gp,q

(c) Relating Clifford algebra C`p,q to the group algebra of Salingaros vee group Gp,q:

(i) As a homomorphic image of the group algebra R[Gp,q] modulo a two dimensional ideal (Chernov [13])

(ii) As a twisted group ring (Albuquerque and Majid [14])

10. On parallelizing the Clifford product in CLIFFORD

11. Using periodicity theorems in higher dimensional Clifford algebras or using eCLIFFORD

12. Appendix:

(a) Sample help pages

(b) Sample Maple worksheets created to derive the above papers, go to
http://math.tntech.edu/rafal/publications.html
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