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Grassmann’s powerful but largely undefined approach to affine and projective geometries has
roots in Möbius’ barycentric calculus [1]. In his appraisal of the former’s work, Peano showed
explicitly the relation of barycentric coordinates with Cartesian coordinates [2]. In our Treatise
([3] p. 33) we went beyond Peano’s work by displaying the advantage of barycentric coordi-
nates in dealing with the main theorems of projective geometry (Desargues, Pappus, etc.). By
giving the equations of lines and planes with barycentric coordinates, we explain the geometric
duality in a purely algebraic way ([3] p. 43, [4]). The generalization of the barycentric co-
ordinates leads to projective frames and coordinates, which allows us to work with the whole
projective geometry of an n-dimensional space without defining the projective space PRn as
projection of an n+1 dimensional space. We will also display the advantages of expressing the
equations of quadrics with projective coordinates of the three-dimensional space. According to
Grassmann ([5], [6] p. 385), the product of two points is a line, the product of three points is
their plane and the product of four points is the whole space. In the same way, the successive
products of dual points in the dual space generate geometric elements having decreasing dimen-
sions [7]. Then, Grassmann’s products of points and dual points will be identified respectively
with the operators join and meet of the projective geometry. Finally, let us emphasize that all
these conclusions can be generalized to n-dimensional spaces.
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[1] A. F. Möbius, Der Barycentrische Calcul (Leipzig, 1827). Facsimile edition of Georg Olms Verlag
(Hildesheim, 1976).

[2] G. Peano, “Saggio di calcolo geometrico” (1896), Opere Scelte III, pp. 166-186, ed. Cremonese, (Roma,
1959). Translated by Hubert C. Kennedy in “Essay on geometrical calculus”, Selected works of Giuseppe
Peano, pp. 169-188, Univ. of Toronto Press (1973).
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