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Abstract.
Grassmann’s legacy is certainly constituted by his many revolutionary

concepts and by exterior algebra, rightly attributed to him and which some-
times bears his name. But he also put a foot in the door of Cliifford algebra
and, to quote É. Cartan, he also created a very fruitful geometric calculus
—specially for projective geometry— where both points and vectors pertain
to the first or primitive class1. Grassmann did his work2 during the golden
age of synthetic geometry, which also was the stone age of the algebraic
foundations of projective geometry. As we shall show, these foundations are
subordinate to those of affine geometry, which is the reason why É. Cartan
developed his general theory of connections starting not with the Euclidean
or projective ones, but with affine connections. The same will be the case
here for the corresponding elementary or Klein geometries, which the theory
of the different types of connections generalizes3.

The use of algebra that respects the equivalence of all points in affine
geometry —thus the absence of a “zero point”— leads to the concept of
canonical affine frame bundle, where the frames are constituted by a point
and a vector basis. But bundles of frames made of points or of lines or, in
dimension n, of linear varieties of dimension (n − 1), may also be used in
affine geometry4. This leads us to consider the relation of frame bundles to
Klein geometries.

The representation up to a proportionality constant of projective transfor-
mations as homographies, which constitute the projective group of matrices,
almost fits the Erlangen program. But the subgroup that leaves a point

1E. Cartan: Nombres complexes. Encyclop. Sc. math. French edition, I5, 1908.
2Herman Grassmann, A New Branch of Mathematics: The Ausdenungslehre of 1844,

and Other Works. Open Court, Chicago, 1995.
3É. Cartan: Sur les variétées a connexion affine et la théorie de la relativité généralisé,

Ann.École Norm. 40, 325-412 (1923).
4R. González-Calvet, Treatise of Plane Geometry through Geometric Algebra , 1996.
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unchanged —essential in Klein geometries— and the matrix representation
of the affine group are typically overlooked. So has been, therefore, the is-
sue of what synthetic projective transformations are directly related to the
post-affine entries in the homographies. We exhibit the subgroup of such
transformations and show that the proper homologies —i.e. not involving
elements at infinity— are directly related to those entries.

We re-interpret from the canonical frame bundle González’s version of
Möbius-Grassmann-Peano theory, the usefulness of that bundle being en-
riched in the process. Thus, his special barycentric coordinates now also
belong to a theory of moving frames where one includes “frames that do not
move”. Improper elements, arising from the use of homogeneous coordinates,
are not needed if duality is not taken too far, as when one replaces the state-
ment that “parallel lines do not intersect” with the statement that “they
intersect at a point at infinity”. It is worth noting that the line at infinity is
dual to the centroid of a triangle, which is not a special point. So, duality
is a very important correspondence, but does not respect the equivalence of
all points (unless, of course, we were to create an unnecessary superstructure
that mimicked the bundles of frames). Thus González’s treatment of Grass-
mann’s system for projective geometry takes it closer to the theory of the
moving frame. Of course, there is nothing moving in this case, since nothing
needs to do so in the Klein geometries; only their Cartanian generalizations
need that the frames “move”.

We proceed to briefly summarize Cartan’s derivation of the equations of
structure of projective connections5

Finally, the Kähler calculus6 can claim to have Grassmann in its as-
cendancy. We shall illustrate how it blends Clifford algebra with exterior
calculus.

5É. Cartan, Sur les varietées à connexion projective, Bull. Soc. math 52, 205-241,
1924.

6E. Kähler, Der innere Differentialkalkül, Rendiconti di Matematica e delle sue Appli-
cazioni, XXI, 425-523, 1962.
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1 Introduction

1.1 Of algebra and geometry

This introduction deals at an elementary level with the three concepts in
the title of the paper. Clifford algebra is not mentioned because it has very
little to do with the Erlangen program and projective geometry. In algebra,
there are not points. Hence, projective geometry cannot be a by-product of
Clifford algebra. In contrast, Grassmann’s progressive-regressive system has
points and vectors together in the first or fundamental class.

In Grassmann’s time, there was not a concept of geometry like in the
Erlangen program. The latter was born in 1872, almost as late as his death.
Of the same decade is the birth of Clifford algebra, which supersedes the
algebraic part of Grassmann’s system, not its geometric part, with which it
is entangled. If not Clifford algebra, what supersedes the geometric part?

Progress on a better algebraic approach to geometry through algebra
required an understanding of the essential difference between algebra and
geometry. As we shall explain, É. Cartan must have known this very well,
as his authorship of the theory of connections indicates. The key concept for
progress was “frame bundles”, which are principal fiber spaces. More on this
is to be found further below.

As J. Dieudonné wrote on Cartan in context of Riemannian spaces (”here”
in the quotation that follows”):

“Finally, it is fitting to mention the most unexpected exten-
sion of Klein’s ideas in differential geometry... By an extremely
original generalization, É. Cartan was able to show here as well
that the idea of “operation” still plays a fundamental role; but it
is necessary to replace to replace the group with a more complex
object, called the “principal fiber space”; one can roughly repre-
sent it with a family of isomorphic groups, parametrized by the
different points under consideration; the action of each of these
groups attaches objects of an “infinitesimal nature” (tangent vec-
tors, tensors, differential forms) at the same point; and it is by
“pulling up to the principal fiber” that É. Cartan was able to in-
augurate a new era in the study (local and global) of Riemannian
spaces and their generalizations.

We have got this quotation from the introduction to the book “The
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Method of Equivalence” by R. Gardner, who credits his assistant Adam
Falk with the translation from Dieudonné’s introduction to The Erlangen
Program by Felix Klein.

We return to the relation between Grassmann’s system and the modern
version of the Erlangen program. In his 1908 paper, Complex Numbers,
Cartan used 17 of its 146 pages to describe Grassmann’s work, mostly the
latter’s progressive-regressive system. As soon as two years later, two of this
paper’s sections carried “moving trihedron” in their titles. He might instead
have used the retrospectively obvious term “moving frames”. He used frames
and their bundles to introduce algebraic structure in geometries.

Cartan chose affine geometry as the most relevant one for his first gen-
eralization of any Klein geometry. He did so in a way consistent with is
view that, for each qualified Lie group, there is a geometry which is to it
what Euclidean geometry is to the Euclidean group. He did not choose the
more general projective geometry, or the more pertinent Lorentz-Minkowski
geometry, as he could have done given that he presented general relativity
as if it were the motivation of his work on a general theory of connections.

Affine spaces are the most general manifolds that, without improper el-
ements, are globally associated with vector spaces. These are a matter of
algebra and have a special element, the zero. Affine spaces are a matter of
geometry and do not have a special element, no special point, no “zero”.
These few statement is all that one needs to understand Cartan’s generaliza-
tion of Klein geometries, and to fill gaps in the study of projective geometry
from the perspective of the Erlangen program.

1.2 Of Grassmannian algebras and geometry

Exterior algebra is the name of the algebra for which Grassmann is best
known by the general mathematical public. But this recognition is a meager
favor to him since it distracts from his many significant mathematical con-
tributions. Speaking specifically of algebras, his formulation of a multitude
of new products virtually amounts to his introduction of informal quotient
algebras (of equally informal tensor algebras) by binary relations. But his
most important algebraic work was his exterior-interior system.

A comment by Dieudonné in his paper The Tragedy of Grassmann seems
pertinent here: “Grassmann is primarily interested in n-dimensional geome-
try, and not in algebra...”. Here, we are not interested in whether this quoted
statement is correct or not, but in that it implicitly states the need to distin-
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guish between these two branches of mathematics. The distinction appears
to have been ignored by many modern algebraists.

Grassmann’s system certainly has much to do with geometry, as can be
inferred from Dieudonné’s comment. By far, the biggest name in geometry
since the Ausdehnungslehre is É. Cartan. he was able to distinguish very
clearly between algebra (under the name of calculus) and geometry in Grass-
mann’s work. In the aforementioned 17 pages, he had this to say about
Grassmann’s system: “If one applies to geometry the extensive calculus ...
of which H. Grassmann’s has developed the laws, one obtains a very fruitful
geometric analysis. (Emphasis added).

Fifty four pages later Cartan devoted five pages to ”The systems of com-
plex numbers and the groups of transformations”. The title “Complex Num-
bers” of the paper could have been “Algebras that Generalize the Complex
Numbers Systems”. And given his view —which is the modern one— on the
relation of groups of transformations to the concept of geometry, he might
have titled those five papers as ”The relation of algebra to geometry.”

Of special interest here is that paper’s section “The systems of Clifford
and of Lipschitz”. Cartan viewed their work as purely algebraic, which we
mention here to insist on the difference between algebra and geometry. This
difference is most easily mixed in Euclidean geometry because the closest link
to an algebraic representation of geometry that there was in Grassmann’s
times was analytic geometry in 3-D Euclidean space. The latter is too often
misidentified with 3-D Euclidean vector space, the base space of Clifford
algebra for that dimension and signature.

In his monumental geometric work, Cartan used exterior algebra and
the dot product of vectors. He did not need more than those products for
developing the theory of connections.

1.3 The Erlangen program

In the original Erlangen program, a geometry was conceived as the study
of anything that is left invariant under the transformations of a Lie group.
Retrospectively, this was too lose a concept. As per Cartan’s reformulation
and extension of that program, one has to distinguish between elementary ge-
ometries, nowadays called Klein geometries, and their generalizations, which
go by the name of the theory of connections.

A Klein geometry is a pair of group, G, and subgroup, Go, and a property
involving them that we shall discuss later on. In Cartan’s generalization of
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Klein geometry, they are retained but only in differential form (Also for later
discussion is the presence of Go as common group of all the fibers, though
the elements of any two different fibers cannot be identified).

Both, Klein geometries and their generalizations share the form of a sys-
tem of equations known as equations of structure. In the case of Klein geome-
tries, they constitute integrability conditions for another differential system
(of connection equations). Upon integration, one obtains the group G. This
is not the case for the generalization. Suffice to remember what Dieudonné
said of the replacement of the group (G) by an action on a frame bundle.
That revolution by Cartan contained another conceptual revolution, namely
the following. In the original Erlangen program, Riemannian geometry was
the geometry of an infinite Lie group. But Cartan pointed out that not only
are such groups not part of what defines a geometry, but they actually mask
out what is geometric in geometry. Their presence is not denied; it is just a
matter of not assigning them a relevance that they lack.

It follows from these considerations on the superseding by Cartan of the
original Erlangen program that he also superseded and made clear the re-
lationship between geometry and algebra present in very entangled form in
Grassmann’s work.

1.4 Of projective geometry and Clifford algebra

In their paper “Projective Geometry with Clifford Algebra”, Hestenes and
Ziegler make statements such as:

“... projective geometry has not been fully integrated into
modern mathematics. The reason ... is to be found in incompat-
ibilities of method”.

In order to fully integrate projective geometry into modern mathematics,
one has to show how it fits into the modern concept of geometry. There is
nothing of this sort in their paper, which is not surprising in any case; it is
difficult, if not impossible, to find in the literature statements about some
simple transformations that complement the affine transformations to yield
the projective group for the same dimension. In the process, one should go
beyond defining the projective Go as the subgroup of the projective group
that leaves a point unchanged. And that is only a beginning. Later on they
state:
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“ ... we seek an efficient formulation of projective geometry
with a coherent mathematical system which provides equally ef-
ficient formulations of the full range of geometric concepts ...”

The authors should also be specific with regards to “efficiency for what”,
certainly not for proving theorems as those by Desargues and Pappus. In his
Treatise on Plane Geometry through Geometric Algebra”, R. González has
already shown how to prove those theorems with just a little exterior algebra,
which certainly is a Clifford solution where only its exterior contents is used.
The proofs then can be done in the back of an envelope if one first reorganizes
his material by dealing with the relation of his frames to those of the canonical
frame bundle, and thus to the Erlangen program. The algebraic treatment
of those theorems then fit in the back of an envelope.

We celebrate the spirit of both of those quotations, but suggest that
proponents of the Hestenes-Ziegler approach to projective geometry go back
to the drawing board and tell us what their full paraphernalia of concepts is
needed for, after R. González has shown what they are not needed for. On
the other hand, I agree with those authors that, in my view, their system
has greater advantages than the system of Rota and his followers, though we
would certainly wish that these made their counter argument, not only to
the Hestenes-Ziegler claim, but also to any claims to be found in this paper
and that we have just announced.

Here is the specific claim to be rebuffed by those who may still have a
better approach: The Erlangen program is first and foremost what brings
order to the rich but disorganized body of projective geometry.
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