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The applications of Clifford algebra to plane geometry are shown in two different 
but complementary cases: the Euclidean and pseudo-Euclidean planes. 
 
Euclidean plane 
 

The algebra for the Euclidean plane is given by 12
2

2
1 == ee  and  

122112 eeeee −=≡ . Vectors are the first-degree elements 2211 evevv +=  while 
the subalgebra of even degree elements is isomorphic to the complex number 
field: biaebaz +≡+= 12 . Both types of quantities are integrated, without 
confusion, into a single algebraic structure of real dimension 4.  
 Geometric transformations of vectors are easily written with geometric 
algebra. In particular the rotation through an angle α can be expressed as: 
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While the first expression reproduces and explains the standard use of the 
complex numbers in plane geometry, only the second one generalises to every 
dimension and to geometric elements of any order. It introduces what has been 
called [1] the spinor 1/2 operators, first found by 
Rodrigues, Cayley and Hamilton for vectors in 
three dimensions. In general if z is a complex 
number with argument α / 2, the rotation through 
an angle α is written as:  zvzv' 1−=  
 
Exactly the same formula applies to the 
reflection of a vector v with respect a direction 
along the vector u :           uvuv' 1−=  
 
The expression of rotations as a sequence of an 
even number of symmetry reflections follows naturally. 

The exponential function of an imaginary argument (Euler and de 
Moivre's formulae) are both analytically obtained and geometrically interpreted 
as an instance of the exponentiation operator, that is, as the limit of the n-th 
power of the infinitesimal n-th root : 
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The figure 1 shows the resulting transformation for n = 5. At the limit ∞→n , the 
resulting vector is obtained by a continuos rotation through an angle α, from 
where it follows the Euler’s identity: 
 
 [ ] ααα sincosexp 1212 ee +=  
 
The usual inner and outer product of two vectors (their regressive and 
progressive Grassmann’s products) may be written by means of their Clifford 
product as the symmetric and antisymmetric part respectively: 
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The geometric (Clifford) product is exactly equivalent to the matrix product of the 
matrix representations of vectors and complex numbers (real 2×2 matrices). 
Then it is associative, distributive but not commutative, every element of the 
algebra having inverse except for special cases. Moreover, the product of three 
coplanar vectors has the permutative property: a vector in a product does not 
commute with neighbouring vectors but it can be permuted with a vector located 
two sites farther: 
 
 u v w = w v u 
 
Due to its intrinsically geometric nature, the geometric algebra allows to solve 
geometric equations (which should be a main objective) without direct reference 
to coordinates, although the translation to these is always possible. As a sample, 
the formulas of the notable points of a triangle deduced in [2] are given. Denoting 
by P, Q and R the vertices of the triangle, the circumcentre O, the incentre I, and 
the orthocentre H are: 
 
 O = − ( P2 QR + Q2 RP + R2 PQ ) ( 2 PQ ∧ QR ) −1 
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 H = ( P  P · QR + Q  Q · RP + R  R · PQ ) ( QR ∧ RP ) −1 
 
where  · symbolises the inner product, two letters together indicate a vector in 
the usual geometric notation, e. g. PQ = Q − P, and letters separated by a 
space indicate Clifford product (sometimes it is reduced to a product of vector 
by a scalar). 
 
 
Pseudo-Euclidean plane 
 

The algebra for the pseudo-Euclidean plane is usually given by 
12
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outer product of two vectors are written in terms of the Clifford geometric product 
as: 
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and like for Euclidean vectors, the product of hyperbolic vectors also fulfils the 
permutative property [2].  

The so called hyperbolic rotation of a vector through an "angle" ψ  (a 
Lorentz transformation of rapidity ψ   or velocity  c tanh ψ  in physics) 
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is again given by the action of the geometric algebra exponential of a bivector, 
being the hyperbolic functions consequence of the positive value of the square    

12
01 =e . This Grassmann bivector is thus a geometric square root of 1 that 

cannot be reduced to the numbers 1 or −1. Thus we have for the finite rotation 
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and for the vector transformation, written in the two-dimensional simplified way 
or in the general universal way zvzv' 1−= : 

( ) 





 +






 +=+=

−

2
sinh

2
cosh

2
sinh

2
cosh sinhcosh 01

1

0101
ψψψψψψ eveevv'  

Following the limit ∞→n  process applied to the unitary vector along the first 
axis, we see that the resulting 
vector is obtained by a 
continuos hyperbolic rotation 
through a hyperbolic angle ψ, 
drawing an arc of equilateral 
hyperbola as shown in figure 
2. If r is the hyperbolic radius 
of the hyperbola 222 ryx =−  
the hyperbolic angle is 
proportional to the pseudo-
Euclidean arc length s of the 
hyperbola: 

 
r
s

=ψ  

Seen as a Lorentz 
transformation this hyperbolic rotation preserves the modulus of momentum and 
position vectors. They are the mass of the particle and the space-time interval 
between two events. In the first case, all possible states of  energy-momentum 
(E, p) for a particle of mass m correspond to all the points of the m-hyperbola: 
 

( ) ( ) 42222222 cmp'cE'pcE =−=−  

Figure 2 
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Again the hyperbolic reflection of a vector v with respect a direction u is given 
by: 
 v' = u −1 v u = u −1 ( v|| + v⊥) u = v|| − v⊥ 
 
since it changes the sign of 
the component perpendicular 
to u. Two directions are 
perpendicular in the pseudo-
Euclidean plane if the inner 
product  of the vectors is zero. 
The geometric plot is shown in 
figure 3 where two 
perpendicular directions are 
seen as symmetrical with 
respect the bisector line of the 
first quadrant. It seems 
confusing, but the true trouble 
is not the plot but the paper, 
whose Euclidean proper 
geometry is subliminally 
captured by our eyes and assumed by our mind. We can get rid of these 
troubles using Minkowski’s space-time, whose time-space points have a 
pseudo-Euclidean proper geometry, and looking at the paper figures as graphic 
representations of that essentially non-spatial reality: 10 exetc + . Also the 
energy-momentum components of a particle can be appropriately expressed by 
the hyperbolic vector 10 epceE +  . 
 But from a mathematical point of view, to deal with these graphic 
representations as objects in itself is equally legitimate. Then we have got, 
combining the two plane geometric algebras, a unified account of both the circle 
and the hyperbola. An account  that  would surely be satisfactory to Leibniz's 
troubles about the still today dominant Cartesian geometry, expressed in a letter 
to Huygens in 1679 proposing a new geometric calculus:  "Car premierement je 
puis exprimer parfaitement par ce calcul toute la nature ou définition de  la 
figure (ce que l'algèbre ne fait jamais, car disant que x2 + y2 aeq. a2 est 
l'équation du cercle, il faut expliquer par la figure ce que c'est  x et y.)"  [3],[4]. 
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